If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2-3=0
a = 17; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·17·(-3)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{51}}{2*17}=\frac{0-2\sqrt{51}}{34} =-\frac{2\sqrt{51}}{34} =-\frac{\sqrt{51}}{17} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{51}}{2*17}=\frac{0+2\sqrt{51}}{34} =\frac{2\sqrt{51}}{34} =\frac{\sqrt{51}}{17} $
| -15=22x+9-x | | 2k=k-8 | | 97^x=45 | | 10=-2/34x+9 | | -7n+7=1-5n | | 5x-3+2x=x+7 | | 6m+10=m | | 4m+10=6m+10 | | 6m+10=4m+10 | | 4=2/3x+12÷1/3x | | 1/3x+6=11 | | 0=-2t^2+6t+1 | | 6x+x=333 | | 3x+x=333 | | 10x+100=15x+20=x | | 3x+x=111 | | 10+100=15+20=x | | 10x-3-20=1 | | 10x+100=15+20 | | 10x+100=15+20=x | | x+100=15+20 | | 15x+100+20=x | | 3/5x=2/5=8/5 | | 100+15+20=x | | 60X+75(x-1)=330 | | x+100+15+20=x | | -1/2x+9=-7 | | 1/2=-3/10x-20=1 | | 3x+x=350 | | 1-(0.99-0.99x)=0.01 | | 1-(0.99-0.99x)=0 | | 5=11z+7z |